Wstęp do teorii mnogości

Roman Murawski, Kazimierz Świrydowicz
Oceń książkę
(0 głosów)
  • Cena: 35.17 zł
    31.66 zł
    Taniej o : 10.00%

Dodatkowe informacje

  • Tytuł (en): -
  • Typ publikacji: Podręcznik, skrypt
  • Rok wydania: 2006
  • Wydanie: II
  • Seria: -
  • ISSN: -
  • ISBN: 83-232-1407-7
  • Liczba stron: 200
  • Liczba arkuszy wyd.: 15,00
  • Format [cm]: 17,0 x 24,0
  • Rodzaj oprawy: miękka, foliowana

Abstrakt (pl)

Podręcznik składa się z dwóch części. Część pierwszą stanowią rozdziały 1 i 2 poświęcone wykładowi elementów rachunku zdań i rachunku predykatów. Druga część, tzn. rozdziały 3-9, poświęcona jest wykładowi tzw. naiwnej teorii mnogości, czyli teorii mnogości w ujęciu nieaksjomatycznym. Ostatni rozdział 10 prezentuje aksjomatyczne ujęcie teorii mnogości Zermela-Fraenkla. Książkę uzupełnia aneks zawierający uwagi historyczne o rozwoju logiki i teorii mnogości. Na końcu poszczególnych rozdziałów podano zadania mające pomóc w przyswojeniu studiowanego materiału.

Spis treści

  • Przedmowa

  • Rozdział 1. Elementy klasycznego rachunku zdań
    • 1.1. Wprowadzenie
    • 1.2. Język rachunku zdań; tautologie
    • 1.3. Schematy wnioskowań. Wnioskowania niezawodne
    • 1.4. Tautologie rachunku zdań
    • 1.5. Warunek dostateczny i konieczny
    • 1.6. Symbolika beznawiasowa
    • Zadania

  • Rozdział 2. Elementy rachunku predykatów
    • 2.1. Wprowadzenie
    • 2.2. Język rachunku predykatów
    • 2.3. Formułowanie wypowiedzi w języku rachunku predykatów
    • 2.4. Przykłady tautologii rachunku predykatów
    • 2.5. Kwantyfikatory o ograniczonym zakresie
    • 2.6. Kwantyfikatory ilościowe
    • Zadania

  • Rozdział 3. Podstawy teorii zbiorów
    • 3.1. Uwagi wstępne
    • 3.2. Zasada ekstensjonalności
    • 3.3. Relacja inkluzji. Zbiór pusty i zbiór potęgowy
    • 3.4. Działania na zbiorach
    • 3.5. Algebry Boole'a
    • Zadania

  • Rozdział 4. Relacje
    • 4.1. Wprowadzenie. Definicja relacji
    • 4.2. Relacje binarne i ich własności. Działania na relacjach binarnych
    • 4.3. Relacje równoważności
    • 4.4. Zastosowania zasady abstrakcji
    • Zadania

  • Rozdział 5. Funkcje
    • 5.1. Uwagi wstępne
    • 5.2. Definicja funkcji. Rodzaje funkcji
    • 5.3. Operacje na funkcjach
    • 5.4. Obrazy i przeciwobrazy oraz ich własności
    • Zadania

  • Rozdział 6. Relacje porządkujące
    • 6.1. Typy relacji porządkujących
    • 6.2. Zbiory częściowo uporządkowane
    • 6.3. Zbiory dobrze uporządkowane
    • Zadania

  • Rozdział 7. Teoria mocy
    • 7.1. Wprowadzenie
    • 7.2. Liczby kardynalne. Twierdzenie Cantora-Bernsteina
    • 7.3. Zbiory przeliczalne
    • 7.4. Zbiory nieprzeliczalne
    • 7.5. Arytmetyka liczb kardynalnych
    • Zadania

  • Rozdział 8. Typy i liczby porządkowe
    • 8.1. Typy porządkowe
    • 8.2. Liczby porządkowe

  • Rozdział 9. Działania uogólnione
    • Zadania

  • Rozdział 10. System aksjomatyczny teorii mnogości
    • Dodatek: Uwagi historyczne

  • Literatura
  • Skorowidz symboli
  • Skorowidz terminów
  • Skorowidz nazwisk

Wydawnictwo Naukowe
Uniwersytetu im. Adama Mickiewicza
Collegium Maius
ul. A. Fredry 10, 
61 - 701 Poznań
Centrala: 61 829 46 46,   Fax: 61 829 46 47,   Sprzedaż: 61 829 46 40
Dział Handlowy press@amu.edu.pl,    Sekretariat wydnauk@amu.edu.pl